Water networks contribute to enthalpy/entropy compensation in protein-ligand binding.

نویسندگان

  • Benjamin Breiten
  • Matthew R Lockett
  • Woody Sherman
  • Shuji Fujita
  • Mohammad Al-Sayah
  • Heiko Lange
  • Carleen M Bowers
  • Annie Heroux
  • Goran Krilov
  • George M Whitesides
چکیده

The mechanism (or mechanisms) of enthalpy-entropy (H/S) compensation in protein-ligand binding remains controversial, and there are still no predictive models (theoretical or experimental) in which hypotheses of ligand binding can be readily tested. Here we describe a particularly well-defined system of protein and ligands--human carbonic anhydrase (HCA) and a series of benzothiazole sulfonamide ligands with different patterns of fluorination--that we use to define enthalpy/entropy (H/S) compensation in this system thermodynamically and structurally. The binding affinities of these ligands (with the exception of one ligand, in which the deviation is understood) to HCA are, despite differences in fluorination pattern, indistinguishable; they nonetheless reflect significant and compensating changes in enthalpy and entropy of binding. Analysis reveals that differences in the structure and thermodynamic properties of the waters surrounding the bound ligands are an important contributor to the observed H/S compensation. These results support the hypothesis that the molecules of water filling the active site of a protein, and surrounding the ligand, are as important as the contact interactions between the protein and the ligand for biomolecular recognition, and in determining the thermodynamics of binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Applications of Isothermal Titration Calorimetry

     Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...

متن کامل

Synthesis, Characterization and interaction Studies of 1-(3-bromophenyl azo) 2,7-dihydroxy naphthalene, (BPADHN) with calf thymus deoxy ribo nucleic acid (ct-DNA)

In this study at first , an azo dye, 2,7- naphthalenediol, 2-[(4-Bromophenyl)azo (BPAND) as a ligand has been synthesized by addition of p-Bromoaniline to the modified montomorillonite K10 clay. This ligand was characterized using 1H-NMR, UV-Vis and IR spectroscopies. Subsequently, its interaction with calf thymus deoxyribonucleicacid ,ct-DNA was investigated in 5 mM phosphate buffer solution, ...

متن کامل

Entropy-enthalpy Compensation Conformational Fluctuation and Induced--t

A localized change in a protein, which occurs as a result of either ligand binding or single amino acid substitution, necessarily encounters the conformational uctuation of the rest of the protein. Both the entropy and the enthalpy associated with the change consist of contributions from uctuations in the atoms surrounding the localized site, but they compensate. A novel thermodynamic ensemble ...

متن کامل

The paradoxical thermodynamic basis for the interaction of ethylene glycol, glycine, and sarcosine chains with bovine carbonic anhydrase II: an unexpected manifestation of enthalpy/entropy compensation.

This paper describes a systematic study of the thermodynamics of association of bovine carbonic anhydrase II (BCA) and para-substituted benzenesulfonamides with chains of oligoglycine, oligosarcosine, and oligoethylene glycol of lengths of one to five residues. For all three of these series of ligands, the enthalpy of binding became less favorable, and the entropy less unfavorable, as the chain...

متن کامل

Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design.

Recent calorimetric studies of interactions between small molecules and biomolecular targets have generated renewed interest in the phenomenon of entropy-enthalpy compensation. In these studies, entropic and enthalpic contributions to binding are observed to vary substantially and in an opposing manner as the ligand or protein is modified, whereas the binding free energy varies little. In sever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 135 41  شماره 

صفحات  -

تاریخ انتشار 2013